Part Number Hot Search : 
Z5W27 MC950 AD7225KN H2102B01 MPS650 SA101 T321051 LCE14
Product Description
Full Text Search
 

To Download APT50GN60BDQ3G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  050-7635 rev a 1-2011 apt50gn60b_sdq3(g) maximum ratings all ratings: t c = 25c unless otherwise speci ? ed. static electrical characteristics characteristic / test conditions collector-emitter breakdown voltage (v ge = 0v, i c = 4ma) gate threshold voltage (v ce = v ge , i c = 800 a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 50a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 50a, t j = 125c) collector cut-off current (v ce = 600v, v ge = 0v, t j = 25c) 2 collector cut-off current (v ce = 600v, v ge = 0v, t j = 125c) 2 gate-emitter leakage current (v ge = 20v) intergrated gate resistor symbol v (br)ces v ge(th) v ce(on) i ces i ges r g(int) units volts a na symbol v ces v ge i c1 i c2 i cm ssoa p d t j ,t stg t l apt50gn60b_sdq3(g) 600 30 107 64 150 150a @ 600v 366 -55 to 175 300 unit volts amps watts c parameter collector-emitter voltage gate-emitter voltage continuous collector current 8 @ t c = 25c continuous collector current @ t c = 110c pulsed collector current 1 @ t c = 175c switching safe operating area @ t j = 175c total power dissipation operating and storage junction temperature range max. lead temp. for soldering: 0.063" from case for 10 sec. caution: these devices are sensitive to electrostatic discharge. proper handling procedures should be followed. utilizing the latest field stop and trench gate technologies, these igbt's have ultra low v ce(on) and are ideal for low frequency applications that require absolute minimum conduction loss. easy paralleling is a result of very tight parameter distribution and a slightly positive v ce(on) temperature coef ? cient. low gate charge simpli ? es gate drive design and minimizes losses. 600v field stop trench gate: low v ce(on) easy paralleling 6 s short circuit capability 175c rated applications : welding, inductive heating, solar inverters, smps, motor drives, ups min typ max 600 5.0 5.8 6.5 1.05 1.45 1.85 1.7 50 tbd 600 n/a c e g t o - 2 4 7 g c e d 3 pak g c e (s) (b) apt50gn60bdq3 apt50gn60sdq3 apt50gn60bdq3(g) apt50gn60sdq3(g) 600v *g denotes rohs compliant, pb free terminal finish. microsemi website - http://www.microsemi.com downloaded from: http:///
apt50gn60b_sdq3(g) 050-7635 rev a 1-2011 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and fred leakages 3 see mil-std-750 method 3471. 4 e on1 is the clamped inductive turn-on energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to the igbt turn-on loss. tested in inductive switching test circuit shown in ? gure 21, but with a silicon carbide diode. 5 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switching loss. (see figures 21, 22.) 6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) 7 r g is external gate resistance, not including r g(int) nor gate driver impedance. (mic4452) 8 continuous current limited by package lead temperature. microsemi reserves the right to change, without notice, the speci ? cations and information contained herein. thermal and mechanical characteristics unit c/w gm min typ max .41 .44 5.9 characteristicjunction to case (igbt) junction to case (diode) package weight symbol r jc r jc w t dynamic characteristics symbol c ies c oes c res v gep q g q ge q gc ssoa scsoa t d(on) t r t d(off) t f e on1 e on2 e off t d(on) t r t d(off) t f e on1 e on2 e off test conditions capacitance v ge = 0v, v ce = 25v f = 1 mhz gate charge v ge = 15v v ce = 300v i c = 50a t j = 175c, r g = 4.3 7 , v ge = 15v, l = 100 h,v ce = 600v v cc = 360v, v ge = 15v, t j = 150c, r g = 4.3 7 inductive switching (25c) v cc = 400v v ge = 15v i c = 50a r g = 4.3 7 t j = +25c inductive switching (125c) v cc = 400v v ge = 15v i c = 50a r g = 4.3 7 t j = +125c characteristicinput capacitance output capacitance reverse transfer capacitance gate-to-emitter plateau voltage total gate charge 3 gate-emitter charge gate-collector ("miller ") charge switching safe operating area short circuit safe operating area turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 turn-on switching energy (diode) 5 turn-off switching energy 6 turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 4 turn-on switching energy (diode) 5 5 turn-off switching energy 6 6 min typ max 3200 125 100 9.0 325 25 175 150 6 20 25 230 100 1185 1465 1565 20 25 260 140 1205 2078 2125 unit pf v nc a s ns j ns j downloaded from: http:///
050-7635 rev a 1-2011 apt50gn60b_sdq3(g) typical performance curves 15v 9v 8v 7v 10v v ge = 15v. 250 s pulse test <0.5 % duty cycle v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(t j = 25c) figure 2, output characteristics (t j = 125c) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction temperature t j , junction temperature (c) t c , case temperature (c) figure 7, breakdown voltage vs. junction temperature figure 8, dc collector current vs case temperature bv ces , collector-to-emitter breakdown v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) voltage (normalized) i c, dc collector current(a) v ce , collector-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) i c , collector current (a) 160140 120 100 8060 40 20 0 160140 120 100 8060 40 20 0 3.53.0 2.5 2.0 1.5 1.0 0.5 0 1.101.05 1.00 0.95 0.90 200180 160 140 120 100 8060 40 20 0 1614 12 10 86 4 2 0 3.02.5 2.0 1.5 1.0 0.5 0 140120 100 8060 40 20 0 13v 11v 12v v ce = 120v v ce =480v 0 1 2 3 4 5 0 5 10 15 20 25 30 0 2 4 6 8 10 12 14 0 50 100 150 200 250 300 350 400 8 10 12 14 16 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 100 125 150 175 v ce = 300v i c = 50a t j = 25c t j = 25c. 250 s pulse test <0.5 % duty cycle i c = 50a i c = 100a i c = 25a i c = 100a i c = 50a i c = 25a t j = 125c t j = 25c t j = -55c t j = 175c t j = 125c t j = 25c t j = -55c t j = 175c lead temperature limited lead temperature limited v ge = 15v 250 s pulse test<0.5 % duty cycle downloaded from: http:///
apt50gn60b_sdq3(g) 050-7635 rev a 1-2011 0 1000 2000 3000 4000 5000 6000 7000 8000 10 30 50 70 90 110 v ge =15v,t j =125c v ge =15v,t j =25c v ce = 400v r g = 4.3 l = 100 h switching energy losses ( j) e on2 , turn on energy loss ( j) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses ( j) e off , turn off energy loss ( j) t f, fall time (ns) t d (off) , turn-off delay time (ns) i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junction temperature 10 30 50 70 90 110 10 30 50 70 90 110 10 30 50 70 90 110 10 30 50 70 90 110 10 30 50 70 90 110 0 10 20 30 40 50 0 25 50 75 100 125 2520 15 10 50 120100 8060 40 20 0 1600014000 12000 10000 80006000 4000 2000 0 350300 250 200 150 100 50 0 160140 120 100 8060 40 20 0 40003500 3000 2500 2000 1500 1000 500 0 60005000 4000 3000 2000 1000 0 v ce = 400v v ge = +15v r g = 4.3 t j = 125c t j = 25c v ce = 400v v ge = +15v r g = 4.3 t j = 125c t j = 25c v ce = 400v t j = 25c , 125c r g = 4.3 l = 100 h v ge = 15v r g = 4.3 , l = 100 h, v ce = 400v t j = 25 or 125c,v ge = 15v r g = 4.3 , l = 100 h, v ce = 400v t j = 125c, v ge = 15v t j = 25c, v ge = 15v e on2, 100a e off, 100a e on2, 50a e off, 50a e on2, 25a e off, 25a v ce = 400v v ge = +15v t j = 125c v ce = 400v v ge = +15v r g = 4.3 e on2, 100a e off, 100a e on2, 50a e off, 50a e on2, 25a e off, 25a typical performance curves downloaded from: http:///
050-7635 rev a 1-2011 apt50gn60b_sdq3(g) 5,0001,000 500100 5010 160140 120 100 8060 40 20 0 c, capacitance ( p f) i c , collector current (a) v ce , collector-to-emitter voltage (volts) v ce , collector to emitter voltage figure 17, capacitance vs collector-to-emitter voltage figure 18,minimim switching safe operating area 0 10 20 30 40 50 0 100 200 300 400 500 600 700 c ies c res c 0es 0.450.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0 z jc , thermal impedance (c/w) 0.3 0.7 single pulse rectangular pulse duration (seconds) figure 19, maximum effective transient thermal impedance, junction-to-case vs pulse duration 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 10 20 30 40 50 60 70 80 f max , operating frequency (khz) i c , collector current (a) figure 20, operating frequency vs collector current t j = 125 c t c = 75 c d = 50 %v ce = 400v r g = 4.3 110 5010 6 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: d = 0.9 typical performance curves downloaded from: http:///
apt50gn60b_sdq3(g) 050-7635 rev a 1-2011 figure 22, turn-on switching waveforms and de ? nitions figure 23, turn-off switching waveforms and de ? nitions t j = 125c collector current collector voltage gate voltage switching energy 5% 10% t d(on) 90% 10% t r 5% t j = 125c collector voltage collector current gate voltage switching energy 0 90% t d(off) 10% t f 90% apt40dq60 i c a d.u.t. v ce figure 21, inductive switching test circuit v cc downloaded from: http:///
050-7635 rev a 1-2011 apt50gn60b_sdq3(g) characteristic / test conditions maximum average forward current (t c = 110c, duty cycle = 0.5) rms forward current (square wave, 50% duty)non-repetitive forward surge current (t j = 45c, 8.3ms) symbol i f ( av ) i f ( rms ) i fsm symbol v f characteristic / test conditions i f = 60a forward voltage i f = 120a i f = 60a, t j = 125c static electrical characteristics unit amps unit volts min typ max 2.0 2.44 1.7 apt50gn60b_sdq3(g) 6094 600 dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci ? ed. ultrafast soft recovery anti-parallel diode min typ max - 26 - 35 - 45 - 4 - - 175 - 680 - 8 - - 100 - 1380 - 26 unit ns nc amps ns nc amps ns nc amps characteristic reverse recovery time reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current symbol t rr t rr q rr i rrm t rr q rr i rrm t rr q rr i rrm test conditions i f = 60a, di f /dt = -200a/ s v r = 400v, t c = 25 c i f = 60a, di f /dt = -200a/ s v r = 400v, t c = 125 c i f = 60a, di f /dt = -1000a/ s v r = 400v, t c = 125 c i f = 1a, di f /dt = -100a/ s, v r = 30v, t j = 25 c z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 24. maximum effective transient thermal impedance, junction-to-case vs. pulse duration 0.450.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0 0.5 single pulse 0.1 0.3 0.7 0.05 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: d = 0.9 typical performance curves downloaded from: http:///
apt50gn60b_sdq3(g) 050-7635 rev a 1-2011 t j = 125 c v r = 400v 30a 60a 120a t rr q rr q rr t rr i rrm 300250 200 150 100 50 0 3025 20 15 10 50 duty cycle = 0.5 t j = 175 c 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 120100 8060 40 20 0 1.41.2 1.0 0.8 0.6 0.4 0.2 0.0 350300 250 200 150 100 50 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) t j , junction temperature ( c) case temperature ( c) figure 29. dynamic parameters vs. junction temperature figure 30. maximum average forward current vs. casetemperature v r , reverse voltage (v) figure 31. junction capacitance vs. reverse voltage 200180 160 140 120 100 8060 40 20 0 20001800 1600 1400 1200 1000 800600 400 200 0 v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 25. forward current vs. forward voltage figure 26. reverse recovery time vs. current rate of change -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 27. reverse recovery charge vs. current rate of change figure 28. reverse recovery current vs. current rate of change 0 0.5 1 1.5 2 2.5 3.0 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) t j = 175 c t j = -55 c t j = 25 c t j = 125 c t j = 125 c v r = 400v 120a 60a 30a t j = 125 c v r = 400v 120a 30a 60a typical performance curves downloaded from: http:///
050-7635 rev a 1-2011 apt50gn60b_sdq3(g) 4 3 1 2 5 5 zero 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current. t rr - reverse r ecovery time, measured from zero crossing where diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero. figure 32. diode test circuit 0.25 i rrm pearson 2878 current transformer di f /dt adjust 30 h d.u.t. +18v 0v t rr / q rr waveform v r apt40gt60br to - 247 package utline 15.49 (.610)16.26 (.640) 5.38 (.212)6.20 (.244) 6.15 (.242) bsc 4.50 (.177) max. 19.81 (.780)20.32 (.800) 20.80 (.819)21.46 (.845) 1.65 (.065)2.13 (.084) 1.01 (.040)1.40 (.055) 3.50 (.138)3.81 (.150) 2.87 (.113)3.12 (.123) 4.69 (.185)5.31 (.209) 1.49 (.059) 2.49 (.098) 2.21 (.087)2.59 (.102) 0.40 (.016)0.79 (.031) collector collector emitter gate 5.45 (.215) bsc dimensions in millimeters and (inches) 2-plcs. 15.95 (.628)16.05(.632) 1.22 (.048)1.32 (.052) 5.45 (.215) bsc{2 plcs.} 4.98 (.196)5.08 (.200) 1.47 (.058) 1.57 (.062) 2.67 (.105)2.84 (.112) 0.46 (.018) {3 plcs} 0.56 (.022) dimensions in millimeters (inches) heat sink (collector)and leads are plated 3.81 (.150)4.06 (.160) (base of lead) collector(heat sink) 1.98 (.078)2.08 (.082) gate collector emitter 0.020 (.001)0.178 (.007) 1.27 (.050)1.40 (.055) 11.51 (.453)11.61 (.457) 13.41 (.528)13.51(.532) revised8/29/97 1.04 (.041)1.15(.045) 13.79 (.543)13.99(.551) revised 4/18/95 d 3 pak package outline e1 sac: tin, silver, copper e3 100% pure tin (cathode) (anode) (cathode) (cathode) (anode) (cathode) figure 32, diode reverse recovery waveform and de ? nitions downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT50GN60BDQ3G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X